How do you find the exact functional value cos 7pi/12 using the cosine sum or difference identity?

1 Answer
Aug 9, 2015

Find #cos ((7pi)/12)#

Ans: #(sqrt2 - sqrt6)/4#

Explanation:

#cos ((7pi)/12) = cos ((3pi)/12 + (4pi)/12) = cos (pi/4 + pi/3)#
Use trig identity: cos (a + b) = cos a.cos b - sin a.sin b

#cos a = cos (pi/4) = sqrt2/2 ; cos b = cos ((pi)/3) = 1/2#
#sin a = sin (pi/4) = sqrt2/2 ; sin a = sin (pi/3) = sqrt3/2#
#cos ((7pi)/12) = cos (pi/4 + pi/3) #=

#=(sqrt2/2)(1/2) - (sqrt2/2)(sqrt3/2) = (sqrt2 - sqrt6)/4#

Check by calculator:
(sqrt2 - sqrt6)/4 = - 0.259
cos ((7pi)/12) = cos 105 = - 0.259 OK