How do you find the exact functional value cot (113 pi/ 12) using the cosine sum or difference identity?

1 Answer
Aug 19, 2015

Find #cot ((113pi)/12)#

Ans: #1/(1 + sqrt2)#

Explanation:

#cot ((113pi)/12) = cot ((5pi)/12 + (108pi)/12) = cot ((5pi)/12)#
#= 1/tan ((5pi)/12)#. Call #tan ((5pi)/12) = tan t#
#tan 2t = tan ((10pi)/12) = tan ((5pi)/6) = - 1/sqrt3#

Apply the trig identity #tan 2t = (2tan t)/(1 - tan^2 t)#
#tan 2t = - 1/sqrt3 = (2tan t)/(1 - t^2)#
We get a quadratic equation in tan t
#tan^2 t - 2sqrt3t - 1 = 0#
#D = d^2 = b^2 - 4ac = 4 + 4 = 8 #--> #d = +- 2sqrt2#
#tan ((113pi)/12) = tan (5pi)/12 = tan t = 1 +- sqrt2#
Because the arc (5pi)/12 is located in Quadrant I, then
#tan ((5pi)/12) = 1 + sqrt2 #

Therefor:
#cot ((113pi)/12) = 1/tan ((5pi)/12) = 1/(1 + sqr2)#