How do you find the exact functional value sin (pi/12) using the cosine sum or difference identity?

2 Answers
Aug 27, 2015

#color(red)(cos(π/12) = (1+ sqrt3)/(2sqrt2))#

Explanation:

#cos(π/12)= cos((3π)/12-(2π)/12) = cos (π/4-π/6)#

The cosine difference identity is:

#cos(A-B) = cosAcosB+sinAsinB#

#cos(π/12) = cos(π/4)cos(π/6) + sin(π/4)sin(π/6)#

We can use the unit circle to work out the values.

Unit Circle
(from www.algebra.com)

#cos(π/12) =cos(π/4)cos(π/6) + sin(π/4)sin(π/6) = sqrt2/2×sqrt3/2 + sqrt 2/2×1/2#

#cos(π/12)= sqrt2/4(sqrt3+1)#

#cos(π/12) = (1+ sqrt3)/(2sqrt2)#

Aug 27, 2015

Find #sin (pi/12)#

Ans: #(sqrt(2 - sqrt3))/2#

Explanation:

Call #sin (pi/12) = sin t#
#cos 2t = cos ((2pi)/12) = cos ((pi)/6) = sqrt3/2#
Apply the trig identity: #cos 2t = 1 - sin^2 t#
#cos 2t = sqrt3/2 = 1 - 2sin^2 t#
#2sin^2 t = 1 - sqrt3/2 = (2 - sqrt3)/2#
#sin^2 t = (2 - sqrt3)/4#
#sin t = +- (sqrt(2 - sqrt3)/2)#
Since sin (pi/12) is positive (Quadrant I), then

#sin (pi/12) = sin t = sqrt ((2 - sqrt3))/2#

Check by calculator: #sin (pi/12) = sin 15 = 0.26#

#(sqrt(2 - sqrt3))/2 = sqrt2.68/2 = 0.517/2 = 0.26. OK#