How do you find the exact relative maximum and minimum of the polynomial function of #f(x)=(x^3)-12x+2#?

1 Answer
Aug 13, 2018

#(-2,18)# is relative maximum point and
#(2,-14)# is relative minimum point.

Explanation:

#f(x)=x^3-12 x +2#

#f^'(x)=3 x^2-12 #, critical points are those point where,

slope,#f'(x)=0 :. 3 x^2-12=0 or 3 (x^2-4)=0 #or

#3 (x+2)(x-2)=0 or x= -2 and x=2#

#f(-2)= (-2)^3-12*(-2)+2= 18 or (-2,18)# and

#f(2)= 2^3-12*2+2= -14 or (2, -14)#

Slope check in interval ,

# x< -2 , f^'(x)= (-)*(-)=(+) ; f'(x)>0 :. #

Therefore, increasing slope.

# -2< x<2 , f^'(x)= (+)*(-)=(-) ; f'(x)<0 :. #,

Therefore, decreasing slope .

# x> 2 , f^'(x)= (+)*(+)=(+) ; f'(x)>0 :. #

Therefore, increasing slope.

At #x=-2# the slope changes from increasing to decreasing,

so #(-2,18)# is local maximum point and

at #x=2# the slope changes from decreasing to increasing,

hence, #(2,-14)# is local minimum point.

graph{x^3-12x +2 [-40, 40, -20, 20]} [Ans]