How do you find the exact value #cos(x+y)# if #tanx=5/3,siny=1/3#?

1 Answer
Jan 17, 2017

#cos(x+y)=(6sqrt2-5)/(3sqrt34)#

Explanation:

Use the cosine angle addition formula:

#cos(x+y)=cosxcosy-sinxsiny#

We need to determine #sinx#, #cosx#, and #cosy# from whatever we have.

Determining #mathbf(sinx,cosx: )#

#tan^2x+1=sec^2x" "" "" "#use #tanx=5/3#

#25/9+1=sec^2x#

#secx=sqrt(34/9)=sqrt34/3#

Then:

#color(blue)(cosx=1/secx=3/sqrt34#

Now using:

#sin^2x+cos^2x=1" "" "" "#where #cosx=3/sqrt34#

#sin^2x+9/34=1#

#color(blue)(sinx=sqrt(25/34)=5/sqrt34#

Determining #mathbf(cosy: )#

#sin^2y+cos^2y=1" "" "" "#use #siny=1/3#

#1/9+cos^2y=1#

#color(blue)(cosy=sqrt(8/9)=(2sqrt2)/3#

Returning to #mathbf(cos(x+y): )#

#cos(x+y)=cosxcosy-sinxsiny#

#color(white)(cos(x+y))=3/sqrt34((2sqrt2)/3)-5/sqrt34(1/3)#

#color(white)(cos(x+y))=(6sqrt2-5)/(3sqrt34)#

Note these are all assuming that #x# and #y# are in the first quadrant (everything is positive).