How do you find the exact value of #3cos^2theta-costheta-2=0# in the interval #0<=theta<2pi#?

1 Answer
Feb 3, 2017

Solution : In interval #0 <= theta < 2 pi ; theta =0^0 , theta = 131.81^0 , theta = 228.19^0#

Explanation:

Note : Assumed, possible values of #theta# are asked to find out.

#3cos^2 theta -cos theta -2=0 or 3cos^2 theta -3cos theta +2cos theta-2=0 or 3cos theta(cos theta-1) +2(cos theta -1)=0 or (3cos theta+2)(cos theta-1) =0 :. #. Either #3cos theta +2=0 :. cos theta = -2/3 or cos theta-1=0 :. cos theta =1# In interval #0 <= theta < 2 pi ; cos 0 =1 :. theta = 0^0 ; cos theta = -2/3 :. theta =cos^-1 (-2/3) = 131.81^0(2dp) #Also #theta =180+(180-131.81)=228.19 # since #cos 228.19 = -2/3#

Solution : In interval #0 <= theta < 2 pi ; theta =0^0 , theta = 131.81^0 , theta = 228.19^0# [Ans]