How do you find the exact value of #cos2theta=2costheta-2cos^2theta# in the interval #0<=theta<2pi#?

1 Answer
Jan 16, 2017

#36^@, 108^@, 252^@, 324^@#

Explanation:

#cos 2t = 2cos t - 2cos^2 t#
Use trig identity: #cos 2t = 2cos^2 t - 1#
We get after replace cos 2t on the left side:
#2cos^2 t - 1 = 2cos t - 2cos^2 t#
#4cos^2 t - 2cos t - 1 = 0#
Solve this quadratic equation for cos t.
#D = d^2 = b^2 - 4ac = 4 + 16 = 20# --> #d = +- 2sqrt5#
There are 2 real roots:
#cos t = -b/(2a) +- d/(2a) = 1/4 +- sqrt5/4 = (1 +- sqrt5)/4#
a. #cos t = (1 + sqrt5)/4 = 0.8090# --> #t = +- 36^@#
b. #cos t = (1 - sqrt5)/4 = - 0.3090# --> #t = +- 108^@#
#- 36^@# is co-terminal to #324^@#
#- 108^@# is co-terminal to #252^@#
Answers for (0, 360):
#36^@, 108^@, 252^@, 324^@#