How do you find the exact value of #cot ((7pi)/4)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 30, 2015 On the trig unit circle, #cot ((7pi)/4) = 1/tan ((7pi)/4)# #tan ((7pi)/4) = tan (- pi/4 + 2pi)# (same terminal) #tan (- pi/4 + 2pi) = tan (- pi/4) = - tan (pi/4) = - 1# #cot ((7pi)/4) = 1/tan = (1/-1) = -1# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 29648 views around the world You can reuse this answer Creative Commons License