How do you find the exact value of #csc(u-v)# given that #sinu=5/13# and #cosv=-3/5#?

1 Answer

#-65/63, 65/33#

Explanation:

Let's Start By Expanding The Expression:- #csc(u-v)#.

So, We have,

#csc(u - v)#

#= 1/sin(u - v)#

#= 1/(sin u cos v - cos u sin v)#.................(i)

[Expanded using the Identity #sin(A - B) = sinAcosB - cosAsinB#]

Now, We have to find #sin v# and #cos u# too.

We all know,

#color(white)(xxx)sin^2theta + cos^2theta = 1#

#rArr sin^2theta = 1 - cos^2 theta#

#rArr sin theta = +- sqrt(1 - cos^2 theta)#

And, Vice Versa.

So, #sin v = +-sqrt(1 - cos^2 v) = +-sqrt(1 - (-3/5)^2) = +-sqrt((25 - 9)/25) = +-4/5#

And, #cos u = =-sqrt(1 - sin^2 u) = +-sqrt(1 - (5/13)^2) = +-sqrt((169 - 25)/169) = +-12/13#

As, #sin v# and #cos u# have both positive and negative values, there will be FOUR values (maybe different or same) [as #4# combination #2 = 4#] for #csc(u - v)#.

So,

From (i),

First Value for #csc(u - v) = 1/((cancel5/13 xx-3/cancel5 )- (4/5 xx 12/13)) = 1/(-3/13 - 48/65) = 1/(-(15 + 48)/65) = -65/63#

Second Value for #csc(u - v) = 1/((cancel5/13 xx-3/cancel5 )- (4/5 xx -12/13)) = 1/(-3/13 + 48/65) = 1/((48 - 15)/65) = 65/33#

Third Value for #csc(u - v) = 1/((cancel5/13 xx-3/cancel5 )- (-4/5 xx 12/13)) = 1/(-3/13 - 48/65) = 1/(-(15 + 48)/65) = -65/63#

Fourth Value for #csc(u - v) = 1/((cancel5/13 xx-3/cancel5 )- (-4/5 xx -12/13)) = 1/(-3/13 + 48/65) = 1/((48 - 15)/65) = 65/33#

We can see First and Third and Second and Fourth values for #csc(u -v)# are same.

So, Basically there are two values for #csc (u - v)#.

In the End,

#csc(u - v) = -65/63, 65/33# is #sin u = 5/13# and #cos v = -3/5#.

Hope this helps.