How do you find the exact value of #sin60°cos30° + sin30°cos60°#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Alan P. · Jim H Apr 26, 2015 #30^o " and " 60^o "are angles of one of the standard triangles"# #sin(30^o) = 1/2# #cos(30^o) = sqrt(3)/2# #sin(60^o) = sqrt(3)/2# #cos(60^o) = 1/2# So #sin(60^o)*cos(30^o) + sin(30^o)*cos(60^o)# #=(sqrt3/2)(sqrt3/2) +(1/2)(1/2) = 3/4 +1/4# #=1# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 80475 views around the world You can reuse this answer Creative Commons License