How do you find the exact values of sin (-17pi/12)+sin(pi/12) using the half angle formula?

1 Answer
Jul 14, 2015

Find exact values of #sin ((-17pi)/12) + sin (pi/12)#

Explanation:

Call #sin ((-17pi)/12) = sin x#
#cos 2x = cos ((-34pi)/12) = cos ((-10pi)/12) - 2pi) = cos ((-5pi)/6)#
#= cos ((5pi)/6) = -(sqrt3)/2#
#cos 2x = -(sqrt3)/2 = 1 - 2sin^2 x# --> #sin^2 x = (2 + sqrt3)/4#
--># sin x = sin ((-17pi)/12) = sqrt(2 + sqrt3)/2#

Call #sin (pi/12) = sin y#
#cos 2y = cos (pi/6) = (sqrt3)/2 = 1 - 2sin^2 y#
#sin^2 y = (2 - sqrt3)/4 --> sin y = sqrt(2 - sqrt3)/2#

Answer: #sin x + sin y = sqrt(2 + sqrt3)/2 + sqrt(2 - sqrt3)/2#