How do you find the exact values of Tan (-195) using the half angle formula?

1 Answer
Sep 19, 2015

Fin tan (-195)

Ans: #sqrt3 - 2#

Explanation:

Call tan (-195) = t
#tan (- 390) = 2t = tan (-30 - 360) = tan (-30) = - tan (30) = - 1/sqrt3#
Apply trig identity: #tan 2t = (2t)/(1 - t^2)#
#-1/sqrt3 = (2t)/(1 - t^2)#
#-1 + t^2 = 2sqrt3t.# Solve the quadratic equation:
#t^2 - 2sqrt3t - 1 = 0#
#D = d^2 = b^2 - 4ac = 12 + 4 = 16# --> #d = +-4#
The 2 real roots are:
#t = sqrt3 +- 2#.
Since the arc (-195) is located in Quadrant II, its tan is positive, then:
#tan (-195) = t = sqrt3 - 2#

Check by calculator:
tan (-195) = -0.27
#sqrt3 - 2# = 1.73 - 2 = - 0.27. OK