#y=e^{-x^2}#
#dy/dx=d/dx[e^{-x^2}]#
#{d^2y}/{dx^2} = d/dx[d/dx[e^{-x^2}]]#
let #u=-x^2#
#d/dx[e^{-x^2}]=d/{du}[e^u]d/dx[-x^2]#
#d/dx[e^{-x^2}]=e^u times -2x#
#d/dx[e^{-x^2}]=-2xe^{-x^2} #
--
#{d^2y}/{dx^2} = d/dx[-2xe^{-x^2} ]#
Product rule:
#{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x d/dx[e^{-x^2}]#
From earlier: #d/dx[e^{-x^2}]=-2xe^{-x^2} #
#{d^2y}/{dx^2} = d/dx[-2x]e^{-x^2} + -2x(-2xe^{-x^2} )#
# d/dx[-2x] = -2#
#{d^2y}/{dx^2} = -2e^{-x^2} + 4x^2e^{-x^2} #
#{d^2y}/{dx^2} = 4x^2e^{-x^2}-2e^{-x^2} #