How do you find the general solutions for #3 (tan A + sec A) = 2cot A#?

1 Answer
Sep 21, 2015

Solve 3(tan A + sec A) = 2cot A

Ans: 270; 23.58 and 156.42 deg

Explanation:

#3(sin A/cos A + 1/cos A) - (2cos A)/sin A = 0#
#(3(sin A + 1))/cos A - (2cos A)/sin A = 0#
#((3sin A + 3)(sin A))/(sin A.cos A) - (2cos^2 A)/(sin A.cos A) = 0#

Develop the numerator, and replace #cos^2 A# by #(1 - sin^2 A)#:
#3sin^2 A + 3sin A - 2(1 - sin^2 A) =#
#= 5sin^2 A + 3sin A - 2 = 0# (Conditions: sin A not 0, and sin B not 0)
Since a - b + c = 0 --> 2 real roots:
#sin A = -1# and #sin A = -c/a = 2/5#
a. sin A = - 1 --> #A = (3pi)/2# (or 290 deg)
b. #sin A = 2/5 = 0.4# --> #A = 23.58# deg and #A = 180 - 23.58 = 156.42# deg