How do you find the indefinite integral of #int 1/(x^(2/3)(1+x^(1/3))#? Calculus Introduction to Integration Integrals of Rational Functions 1 Answer Monzur R. May 19, 2017 #A(x)=3ln|root(3)x+1|+"c"# Explanation: #int 1/(x^(2/3)(1+x^(1/3))# #dx# #=3int x^(-2/3)/(3(1+x^(1/3))# #dx# We now have the integrand in the form #(f'(x))/f(x)#. Using the reverse chain rule, we know that the integrals of these forms are #ln|f(x)|+"c"#. #therefore int 1/(x^(2/3)(1+x^(1/3))# #dx=3ln|root(3)x+1|+"c"# Answer link Related questions How do you integrate #(x+1)/(x^2+2x+1)#? How do you integrate #x/(1+x^4)#? How do you integrate #dx / (2sqrt(x) + 2x#? What is the integration of #1/x#? How do you integrate #(1+x)/(1-x)#? How do you integrate #(2x^3-3x^2+x+1)/(-2x+1)#? How do you find integral of #((secxtanx)/(secx-1))dx#? How do you integrate #(6x^5 -2x^4 + 3x^3 + x^2 - x-2)/x^3#? How do you integrate #((4x^2-1)^2)/x^3dx #? How do you integrate #(x+3) / sqrt(x) dx#? See all questions in Integrals of Rational Functions Impact of this question 1767 views around the world You can reuse this answer Creative Commons License