How do you find the indefinite integral of #int 3^x#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer t0hierry Jan 31, 2017 #3^x/(ln 3)# Explanation: #3^x = e^(x ln 3)# so #int 3^x dx = int e^(x ln 3) dx = e^(x ln3)/(ln 3) = 3^x/(ln 3)# - Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 2846 views around the world You can reuse this answer Creative Commons License