How do you find the indefinite integral of #int 5^-x#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Ratnaker Mehta Mar 24, 2017 #because, inta^xdx=a^x/lna+c, :. int5^-xdx=int(1/5)^xdx# #=(1/5)^x/ln(1/5)=(5^-x)/(ln1-ln5)=-5^-x/ln5+C.# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3^(x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? See all questions in Integrals of Exponential Functions Impact of this question 1235 views around the world You can reuse this answer Creative Commons License