How do you find the indefinite integral of #int sqrtx/(sqrtx-3)#?
2 Answers
I got:
#x + 6sqrtx + 18ln|sqrtx - 3| + C#
Let
#=> 2int u^2/(u - 3)du#
By subtracting and adding
#=> 2int (u^2 - 9)/(u - 3) + 9/(u - 3)du#
#= 2int ((u + 3)cancel((u - 3)))/cancel(u - 3) + 9/(u - 3)du#
#= 2int u+3 + 9/(u - 3)du#
#= 2(u^2/2 + 3u + 9ln|u - 3|)#
#= u^2 + 6u + 18ln|u - 3|#
But since
#=> color(blue)(int sqrtx/(sqrt(x) - 3)dx = x + 6sqrtx + 18ln|sqrtx - 3| + C)#
Explanation:
#I=intsqrtx/(sqrtx-3)dx#
We will use the substitution
Differentiating both sides of the substitution, we see that
Since there's currently no
#I=intsqrtx/(sqrtx-3)(2sqrtx)(1/(2sqrtx)dx)#
#I=2int(sqrtxsqrtx)/(sqrtx-3)(1/(2sqrtx)dx)#
Returning to our substitutions, which we can now make more easily: we have let
#I=2int(u+3)^2/udu#
Expanding the squared term:
#I=2int(u^2+6u+9)/udu#
Dividing through:
#I=2int(u+6+9/u)du#
We can write this as
#I=2intu+12intdu+18int1/udu#
All of these are fairly common integrals:
#I=2(u^2/2)+12u+18lnabsu+C#
From
#I=(sqrtx-3)^2+12(sqrtx-3)+18lnabs(sqrtx-3)+C#
Expanding the first two terms to simplify:
#I=(x-6sqrtx+9)+12sqrtx-36+18lnabs(sqrtx-3)+C#
The two constants can merge into
#I=x+6sqrtx+18lnabs(sqrtx-3)+C#