How do you find the integral #int (sqrtx-1)^2/sqrtxdx# using substitution?

2 Answers
Aug 24, 2016

#int (sqrtx-1)^2/sqrtxdx = 2/3(sqrt x-1)^3+C#

Explanation:

Calling #y = sqrt(x)# after

#dy =1/2 dx/sqrt(x)#

and substituting

#int (sqrtx-1)^2/sqrtxdx equiv 2int (y-1)^2 dy = 2/3(y-1)^3+C#

Recovering the initial variable

#int (sqrtx-1)^2/sqrtxdx = 2/3(sqrt x-1)^3+C#

Aug 24, 2016

#(2sqrtx)/3(x-3sqrtx+3)+C#.

Explanation:

Let #I=int(sqrtx-1)^2/sqrtxdx#

We subst. #x=t^2 rArr dx=2tdt#. Also,

#(sqrtx-1)^2/sqrtx=(t-1)^2/t=(t^2-2t+1)/t#.

#rArr I=int{(t^2-2t+1)/t}2tdt#

#=2int(t^2-2t+1)dt#

#=2[t^3/3-2t^2/2+t]#

#=(2t)/3(t^2-3t+3)#

#:. I = (2sqrtx)/3(x-3sqrtx+3)+C#.

Though we have solved the Problem using Substn. Methodas was

so demanded , but, in fact, there is no such need to solve it

in this fashion. Have a look :

#I=int(sqrtx-1)^2/sqrtxdx#

#=int{(x-2sqrtx+1)}/sqrtxdx#

#=int{x/sqrtx-2sqrtx/sqrtx+1/sqrtx}dx#

#=int(x^(1/2)-2+x^(-1/2))dx#

#=x^(3/2)/(3/2)-2x+x^(1/2)/(1/2)#

#=(2x^(3/2))/3-2x+2x^(1/2)#

#=(2x^(1/2))/3(x-3x^(1/2)+3), or, (2sqrtx)/3(x-3sqrtx+3)+C#, as before!

Enjoy Maths.!