How do you find the integral of #1 / (1 + sin^2 x)#?
1 Answer
Explanation:
#I=int1/(1+sin^2x)dx#
Notice that dividing by
#I=int(1/cos^2x)/((1+sin^2x)/cos^2x)dx=intsec^2x/(sec^2x+tan^2x)dx#
Recall that
#I=intsec^2x/((1+tan^2x)+tan^2x)dx=intsec^2x/(1+2tan^2x)dx#
We will use the substitution
#I=int(1/sqrt2sec^2theta)/(1+2(1/sqrt2tantheta)^2)d theta=1/sqrt2int(sec^2theta)/(1+2(1/2tan^2theta))d theta#
#I=1/sqrt2int(sec^2theta)/(1+tan^2theta)d theta#
Using the same trigonometric identity:
#I=1/sqrt2intsec^2theta/sec^2thetad theta=1/sqrt2intd theta=1/sqrt2theta+C#
From
#I=arctan(sqrt2tanx)/sqrt2+C#