How do you find the integral of #cos^(2)2xdx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cesareo R. Jul 18, 2016 #int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C# Explanation: Using the fact #cos(a+b)=cos(a) cos(b)-sin( a) sin(b)# we know that #cos(2a) = 2cos^2(a)-1# then #cos^2(a)=(cos(2a)+1)/2# so #cos^2(2x) =(cos(4x)+1)/2# and finally #int cos^2(2x) dx = 1/2int cos(4x)dx + 1/2x + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1231 views around the world You can reuse this answer Creative Commons License