How do you find the integral of #cos(x)^2*sin(x)^2#?

1 Answer
Oct 21, 2016

#x/8-1/32sin(4x)+C#

Explanation:

This can be written as:

#I=intcos^2(x)sin^2(x)dx#

We can rewrite this using the identity #sin(2x)=2sin(x)cos(x)#. Thus, #sin(x)cos(x)=sin(2x)/2#. Square both sides to see that #cos^2(x)sin^2(x)=sin^2(2x)/4#. Thus:

#I=1/4intsin^2(2x)dx#

Let #u=2x# so that #du=2dx#.

#I=1/8intsin^2(2x)*(2dx)=1/8intsin^2(u)du#

The way to integrate this is to use another double-angle formula.

#cos(2u)=1-2sin^2(u)" "=>" "sin^2(u)=1/2(1-cos(2u))#

Thus:

#I=1/16int(1-cos(2u))du#

#I=1/16intdu-1/16intcos(2u)du#

The first integral is the most basic integral and the second can be solved through inspection or substitution, where #v=2u#.

#I=1/16u-1/32sin(2u)+C#

Since #u=2x#:

#I=x/8-1/32sin(4x)+C#