How do you find the integral of #cos(x)^2*sin(x)^2#?
1 Answer
Oct 21, 2016
Explanation:
This can be written as:
#I=intcos^2(x)sin^2(x)dx#
We can rewrite this using the identity
#I=1/4intsin^2(2x)dx#
Let
#I=1/8intsin^2(2x)*(2dx)=1/8intsin^2(u)du#
The way to integrate this is to use another double-angle formula.
#cos(2u)=1-2sin^2(u)" "=>" "sin^2(u)=1/2(1-cos(2u))#
Thus:
#I=1/16int(1-cos(2u))du#
#I=1/16intdu-1/16intcos(2u)du#
The first integral is the most basic integral and the second can be solved through inspection or substitution, where
#I=1/16u-1/32sin(2u)+C#
Since
#I=x/8-1/32sin(4x)+C#