How do you find the integral of #int 1/(sqrtxsqrt(1-x)#?
1 Answer
Nov 22, 2016
Explanation:
#I=int1/(sqrtxsqrt(1-(sqrtx)^2))dx#
Let
#I=2int1/(2sqrtxsqrt(1-(sqrtx)^2))dx#
#I=2int1/sqrt(1-u^2)du#
You may recognize this as the arcsine integral, but we can substitute
#I=2int1/sqrt(1-sin^2theta)(costhetad theta)#
Since
#I=2int1/costhetacosthetad theta#
#I=2intd theta#
#I=2theta+C#
From
#I=2arcsin(u)+C#
#I=2arcsin(sqrtx)+C#