How do you find the integral of #int(2x)/(x^2+6x+13) dx# Calculus Techniques of Integration Integral by Partial Fractions 1 Answer Massimiliano Feb 16, 2015 The answer is: #ln(x^2+6x+13)-3arctan(1/2(x+3))+c# Follow my passages: #int(2x)/(x^2+6x+13)dx=int(2x+6-6)/(x^2+6x+13)dx=# #=int(2x+6)/(x^2+6x+13)dx-6intdx/(x^2+6x+13)=(1)# #x^2+6x+13=x^2+6x+9+4=(x+3)^2+4=# #=4[1/4(x+3)^2+1]=4[(1/2(x+3))^2+1]#. So: #(1)=ln(x^2+6x+13)-6intdx/(4[(1/2(x+3))^2+1])=# #=ln(x^2+6x+13)-6/4intdx/((1/2(x+3))^2+1)=# #=ln(x^2+6x+13)-3/2*2int(1/2)/((1/2(x+3))^2+1)dx=# #=ln(x^2+6x+13)-3arctan(1/2(x+3))+c# Answer link Related questions How do I find the partial fraction decomposition of #(2x)/((x+3)(3x+1))# ? How do I find the partial fraction decomposition of #(1)/(x^3+2x^2+x# ? How do I find the partial fraction decomposition of #(x^4+1)/(x^5+4x^3)# ? How do I find the partial fraction decomposition of #(x^4)/(x^4-1)# ? How do I find the partial fraction decomposition of #(t^4+t^2+1)/((t^2+1)(t^2+4)^2)# ? How do I find the integral #intt^2/(t+4)dt# ? How do I find the integral #int(x-9)/((x+5)(x-2))dx# ? How do I find the integral #int1/((w-4)(w+1))dw# ? How do I find the integral #intdx/(x^2(x-1)^2)# ? How do I find the integral #int(x^3+4)/(x^2+4)dx# ? See all questions in Integral by Partial Fractions Impact of this question 11706 views around the world You can reuse this answer Creative Commons License