How do you find the integral of #int arctan(x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Oct 20, 2015 #I = xarctanx - 1/2 ln (x^2+1) + C# Explanation: Integration By Parts: #int udv = uv - int vdu# #u = arctanx => du = 1/(x^2+1) dx# #dv = dx => v=x# #I = int arctanx dx = xarctanx - int x* 1/(x^2+1)dx# #I = xarctanx - int (xdx)/(x^2+1) = xarctanx - int (1/2d(x^2+1))/(x^2+1)# #I = xarctanx - 1/2 int (d(x^2+1))/(x^2+1)# #I = xarctanx - 1/2 ln (x^2+1) + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1763 views around the world You can reuse this answer Creative Commons License