How do you find the integral of int cotx dx∫cotxdx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Oct 25, 2015 ln|sinx|+Cln|sinx|+C Explanation: int cotxdx = int cosx/sinxdx=int(cosxdx)/sinx=int (d(sinx))/sinx = ln|sinx|+C∫cotxdx=∫cosxsinxdx=∫cosxdxsinx=∫d(sinx)sinx=ln|sinx|+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx∫cos5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt∫sin2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx∫(1+cos(x))2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 11082 views around the world You can reuse this answer Creative Commons License