How do you find the integral of #int csc^n(x)# if m or n is an integer?
2 Answers
There is no
Explanation:
Repeat until you get
Explanation:
If we want to derive the reduction formula:
#I=intcsc^n(x)dx=intcsc^(n-2)(x)csc^2(x)dx#
Now, perform integration by parts on this, taking the form
Let
#du=(n-2)csc^(n-3)(x)*(-csc(x)cot(x))dx#
#color(white)(du)=-(n-2)csc^(n-2)(x)cot(x)dx#
And let
Plugging these in yields:
#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^(n-2)(x)cot^2(x)dx#
Now, through the Pythagorean identity, let
#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^(n-2)(x)(csc^2(x)-1)dx#
Distributing which gives:
#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^n(x)dx+(n-2)intcsc^(n-2)(x)dx#
Since
#I=-cot(x)csc^(n-2)(x)-(n-2)I+(n-2)intcsc^(n-2)(x)dx#
Adding
#(n-1)I=-cot(x)csc^(n-2)(x)+(n-2)intcsc^(n-2)(x)dx#
Solving for
#intcsc^n(x)dx=(-cot(x)csc^(n-2)(x))/(n-1)+(n-2)/(n-1)intcsc^(n-2)(x)dx#
And then repeat this with