How do you find the integral of #int csc^n(x)# if m or n is an integer?

2 Answers
Oct 20, 2016

There is no #m# in the integral. To evaluate #intcsc^n(x) dx# for integer #n# use the reduction formula:

Explanation:

#int csc^n(x) dx = (-1)/(n-1)cotx csc^(n-2)x+(n-2)/(n-1)intcsc^(n-2)x dx#

Repeat until you get #int csc^2 x dx# which is # -cotx# or you get #intcscx dx# which is #ln abs(cscx-cotx)#

Oct 22, 2016

#intcsc^n(x)dx=(n-2)/(n-1)intcsc^(n-2)(x)dx-(cot(x)csc^(n-2)(x))/(n-1)#

Explanation:

If we want to derive the reduction formula:

#I=intcsc^n(x)dx=intcsc^(n-2)(x)csc^2(x)dx#

Now, perform integration by parts on this, taking the form #intudv=uv-intvdu#.

Let #u=csc^(n-2)(x)#. Differentiating this gives:

#du=(n-2)csc^(n-3)(x)*(-csc(x)cot(x))dx#

#color(white)(du)=-(n-2)csc^(n-2)(x)cot(x)dx#

And let #dv=csc^2(x)#. Integrating this gives #v=-cot(x)#.

Plugging these in yields:

#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^(n-2)(x)cot^2(x)dx#

Now, through the Pythagorean identity, let #cot^2(x)=csc^2(x)-1#.

#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^(n-2)(x)(csc^2(x)-1)dx#

Distributing which gives:

#I=-cot(x)csc^(n-2)(x)-(n-2)intcsc^n(x)dx+(n-2)intcsc^(n-2)(x)dx#

Since #intcsc^n(x)dx=I#:

#I=-cot(x)csc^(n-2)(x)-(n-2)I+(n-2)intcsc^(n-2)(x)dx#

Adding #(n-2)I# to both sides (this is weird to think about):

#(n-1)I=-cot(x)csc^(n-2)(x)+(n-2)intcsc^(n-2)(x)dx#

Solving for #I=csc^n(x)dx#:

#intcsc^n(x)dx=(-cot(x)csc^(n-2)(x))/(n-1)+(n-2)/(n-1)intcsc^(n-2)(x)dx#

And then repeat this with #intcsc^(n-2)(x)dx# until it's either #intcsc^2(x)dx=-cot(x)# or #intcsc(x)dx=-lnabs(cot(x)+csc(x))#.