How do you find the integral of #int sin^3(x)dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Bill K. Oct 6, 2015 #int sin^{3}(x)\ dx=1/3 cos^{3}(x)-cos(x)+C# Explanation: Use the identity #sin^{2}(x)=1-cos^{2}(x)# and then let #u=cos(x)# so that #du = -sin(x)\ dx# and #int sin^{3}(x)\ dx=int(1-cos^{2}(x))sin(x)\ dx=int (u^2-1)\ du# #=u^3/3-u+C=1/3 cos^{3}(x)-cos(x)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1138 views around the world You can reuse this answer Creative Commons License