How do you find the integral of #int sin x * tan x dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Mar 8, 2018 The answer is #=ln(|tanx+secx|)-sinx+C# Explanation: We need #tanx=sinx/cosx# #intsecxdx=ln(tanx+secx)+C# Therefore, #intsinxtanxdx=intsecxsin^2xdx=intsecx(1-cos^2x)dx# #=int(secx-cosx)dx# #=intsecxdx-intcosxdx# #=ln(|tanx+secx|)-sinx+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 62339 views around the world You can reuse this answer Creative Commons License