How do you find the integral of #int sin x * tan x dx#?

1 Answer
Write your answer here...
Start with a one sentence answer
Then teach the underlying concepts
Don't copy without citing sources
preview
?

Answer

Write a one sentence answer...

Answer:

Explanation

Explain in detail...

Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

14
Mar 8, 2018

Answer:

The answer is #=ln(|tanx+secx|)-sinx+C#

Explanation:

We need

#tanx=sinx/cosx#

#intsecxdx=ln(tanx+secx)+C#

Therefore,

#intsinxtanxdx=intsecxsin^2xdx=intsecx(1-cos^2x)dx#

#=int(secx-cosx)dx#

#=intsecxdx-intcosxdx#

#=ln(|tanx+secx|)-sinx+C#

Was this helpful? Let the contributor know!
1500
Trending questions
Impact of this question
15225 views around the world
You can reuse this answer
Creative Commons License