How do you find the integral of #int (x^4-1)/(x^2+1)dx#? Calculus Techniques of Integration Integration by Trigonometric Substitution 1 Answer Konstantinos Michailidis Dec 4, 2016 We have that #int (x^4-1)/(x^2+1)dx=int [(x^2+1)*(x^2-1)]/(x^2+1)dx= int (x^2-1)dx=x^3/3-x+c# Answer link Related questions How do you find the integral #int1/(x^2*sqrt(x^2-9))dx# ? How do you find the integral #intx^3/(sqrt(x^2+9))dx# ? How do you find the integral #intx^3*sqrt(9-x^2)dx# ? How do you find the integral #intx^3/(sqrt(16-x^2))dx# ? How do you find the integral #intsqrt(x^2-1)/xdx# ? How do you find the integral #intsqrt(x^2-9)/x^3dx# ? How do you find the integral #intx/(sqrt(x^2+x+1))dx# ? How do you find the integral #intdt/(sqrt(t^2-6t+13))# ? How do you find the integral #intx*sqrt(1-x^4)dx# ? How do you prove the integral formula #intdx/(sqrt(x^2+a^2)) = ln(x+sqrt(x^2+a^2))+ C# ? See all questions in Integration by Trigonometric Substitution Impact of this question 14181 views around the world You can reuse this answer Creative Commons License