How do you find #intsin^2 (2x) cos^3 (2x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cem Sentin Apr 13, 2018 #(sin2x)^3/6-(sin2x)^5/10+C# Explanation: #int (sin2x)^2*(cos2x)^3*dx# =#int (sin2x)^2*(cos2x)^2*cos2x*dx# =#int (sin2x)^2*(1-(sin2x)^2)*cos2x*dx# =#1/2int (sin2x)^2*(1-(sin2x)^2)*2cos2x*dx# After using #y=sin2x# and #dy=2cos2y*dy# transforms, this integral became #1/2int y^2*(1-y^2)*dy# =#1/2int y^2*dy-1/2int y^4*dy# =#y^3/6-y^5/10+C# =#(sin2x)^3/6-(sin2x)^5/10+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 7346 views around the world You can reuse this answer Creative Commons License