How do you find the integral of #sin(2 pi t) dt#?
1 Answer
Mar 17, 2016
Explanation:
We have:
#intsin(2pit)dt#
Substitute:
#u=2pit" "=>" "du=2pidt#
In order to have
#=1/(2pi)intsin(2pit)*2pidt#
Substituting, we obtain:
#=1/(2pi)intsin(u)du#
This is a common integral:
#=-1/(2pi)cos(u)+C#
Back substituting for
#=(-cos(2pit))/(2pi)+C#