How do you find the integral of #sin^3(x) cos^2(x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Oct 12, 2015 #I = 1/5cos^5x-1/3cos^3x+C# Explanation: #I = int sin^3xcos^2xdx = int sin^2xcos^2xsinxdx# #I = int (1-cos^2x)cos^2xsinxdx# #cosx=t => -sinxdx=dt => sinxdx=-dt# #I = int (1-t^2)t^2(-dt) = int (t^4-t^2)dt = t^5/5-t^3/3+C# #I = 1/5cos^5x-1/3cos^3x+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 81664 views around the world You can reuse this answer Creative Commons License