How do you find the inverse of #f(x)=3^(x+2)#?

1 Answer
Dec 7, 2015

#f^(-1)x = -2 + log_3x#

Explanation:

Given #f(x)= 3^(x+2)#

Step 1" Change #f(x)# to #y#
#y = 3^(x+2)#

Step 2: Switch x and y
#x= 3^(y+2)#

Step 3: Begin to solve for y

Taking #log# of both side
#log(x) = log3^(y+2)#
#log x = (y+2)log3# ; since #color(red)(log(a)^n = nloga)#
#logx/(log3) = y+2#
#log_3(x)= y+2#; since #color(blue)(log_aB= logB/loga)#
#log_3(x)-2= y hArr -2 + log_3x = y#

Step 4: Change y to #f^(-1) x#
#f^(-1)x = -2 + log_3x#