How do you find the inverse of #f(x)=sqrt(x-3)#?

2 Answers
May 20, 2017

#f^-1(x)=x^2+3# where #x>=0#

Explanation:

You can find the inverse function by exchanging #x# and #y# and then solve for #y# in terms of #x#.

#y=sqrt(x-3)# (Original function)
#x=sqrt(y-3)#
#x^2=y-3#
#x^2+3=y#
Therefore
#f^-1(x)=x^2+3#

The domain of the inverse function, #f^-1(x)# is equal to the range of the original function #f(x)#. The range should be #[0, +oo)# if the domain of #f(x)# is #[3, +oo)#.

May 20, 2017

The inverse is #f^-1(x)=x^2+3#

Explanation:

The domain of #f(x)# is #x in [3,+oo)# and the range is #y in [0,+oo)#

Let #color(blue)(y)=sqrt(color(red)(x)-3)#

Interchange #x # and #y#

#color(red)(x)=sqrt(color(blue)(y)-3)#

Now, we express #y# in terms of #x#

#x^2=y-3#

#y=x^2+3#

Therefore,

#f^-1(x)=x^2+3#

The domain and range of #f^-1(x)# is the range and domain of #f(x)#

The domain of #f^-1(x)# is #x in [0,+oo)# and the range is #y in [3,+oo)#

Verification

#f(f^-1(x))=f(x^2+3)=sqrt(x^2+3-3)=x#