If #color(red)(bar(f)(x))# is the inverse of #color(blue)(f(x))#
then
#color(white)("XXX")color(blue)(f"(")color(red)(bar(f)(x))color(blue)(")") = x#
and
#color(white)("XXX")color(blue)(f"(")color(red)(bar(f)(x))color(blue)(")")=(color(red)(bar(f)(x)))/(color(red)(bar(f)(x))+1)#
#color(white)("XXX")color(red)(bar(f)(x))=x*(color(red)(bar(f)(x))+1)#
#color(white)("XXX")color(red)(bar(f)(x))-x*color(red)(bar(f)(x)) =x#
#color(white)("XXX")color(red)(bar(f)(x))*(1-x)=x#
#color(white)("XXX")color(red)(bar(f)(x)) = x/(1-x)#
Since this expression provides a unique solution for all valid values of #x#; it is a function.