How do you find the limit of #[1/(3+x)]- (1/3) ÷ x# as x approaches 0?

1 Answer
May 25, 2016

Add some fractions and do some algebra to find #lim_(x->0)(1/(3+x)-1/3)/x=-1/9#.

Explanation:

I'm assuming you mean #lim_(x->0)(1/(3+x)-1/3)/x#.

Direct substitution produces the indeterminate form #0/0#, and that doesn't help us very much.

Let's see what happens when we add the fractions in the numerator:
#lim_(x->0)(1/(3+x)-1/3)/x#
#=(1/(3+x)-1/3((1+x/3)/(1+x/3)))/x#
#=(1/(3+x)-(1+x/3)/(3+x))/x#
#=((1-(1+x/3))/(3+x))/x#
#=((1-1-x/3)/(3+x))/x#
#=((-x/3)/(3+x))/x#
#=(-x)/(3(3+x)x)#
#=-1/(3(3+x)#

Phew! Now we can try direct substitution again:
#lim_(x->0)-1/(3(3+x)#
#=-1/(3(3+0))=-1/9#

And we're done.