How do you find the limit of #(1-cosx)/(2x^2 - x)# as x approaches 0?

2 Answers
Feb 15, 2017

#lim_(x->0) (1-cosx)/(2x^2-x) = 0#

Explanation:

We can use the Maclaurin series for #cos#...

#cos x = 1/(0!)-x^2/(2!)+x^4/(4!)-x^6/(6!)+...#

So:

#1 - cos x = 1/2x^2-O(x^4)#

and:

#lim_(x->0) (1-cosx)/(2x^2-x) = lim_(x->0) (1/2x^2-O(x^4))/((2x-1)x)#

#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = lim_(x->0) (1/2x-O(x^3))/(2x-1)#

#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = 0/(-1)#

#color(white)(lim_(x->0) (1-cosx)/(2x^2-x)) = 0#

Feb 15, 2017

If you've learned them, use the fundamental trigonometric limits.

Explanation:

#lim_(xrarr0)sinx/x = 1# (By an argument based on some geometry and the squeeze theorem.)

#lim_(xrarr0)(1-cosx)/x = 0# (Use the limit above and trig identities.)

#lim_(xrarr0)(1-cosx)/(2x^2-x) = lim_(xrarr0)(1-cosx)/x *1/(2x-1)#

#= lim_(xrarr0)(1-cosx)/x * lim_(xrarr0) 1/(2x-1)#

# = 0 * 1/-1 = 0#