How do you find the locus of the center of the hyperbola having asymptotes given by #y-x tan alpha+1=0 and y-x tan(alpha+pi/4)+2=0#, where #alpha# varies?

2 Answers
Dec 15, 2016

The equations of the locus are:

#x=cosalpha(cosalpha-sinalpha)#

#y=-1+sinalpha(cosalpha-sinalpha)#

Explanation:

By definition the center of the hyperbola is the point where the asymptotes cross, so that they solve the system:

#y-xtanalpha+1 = 0#
#y-xtan(alpha+pi/4)+2=0#

#y-xtanalpha = -1#
#y-xtan(alpha+pi/4)=-2#

Subtracting member by member:

#x(tan(alpha+pi/4)-tanalpha)= 1#

So:

#x=1/(tan(alpha+pi/4)-tanalpha)#

Now note that:

#1/(tan(alpha+pi/4)-tanalpha)= 1/(sin(alpha+pi/4)/cos(alpha+pi/4)-sinalpha/cosalpha)= (cos(alpha+pi/4)cosalpha)/(sin(alpha+pi/4)cosalpha-sinalphacos(alpha+pi/4))=cosalpha(cosalphacos(pi/4)-sinalphasin(pi/4))/sin(alpha+pi/4-alpha)=cosalpha(cosalpha-sinalpha)#

so:

#x=cosalpha(cosalpha-sinalpha)#

#y=-1+tanalphacosalpha(cosalpha-sinalpha)=-1+sinalpha(cosalpha-sinalpha)#

Are the equations of the locus.

Dec 15, 2016

This locus is the circle, with center at #(1/2, -3/2)# and
radius #1/sqrt2#.

Explanation:

The asymptotes meet at the center of the hyperbola.

Let #t = tan alpha#. Use #tan(A+B)=(tan A + tan B)/(1-tan A tan B)# and #tan(pi/4) = 1#.

The coordinates (x, y) of the center are given by

#y= xt-1=x(t+1)/(1-t.)-2#. Eliminating t,

#y=x((1+(y+1)/x)/((1-(y+1)/x)))-2#

#=x((x+y+1)/(x-y-1))-2#. Cross multiplying,

#xy-y^2-y=x^2+xy+x-2(x-y-1)#. Simplifying,

#x^2+y^2-x+3y+2=0#. In the standard form,

#(x-1/2)^2+(y+3/2)^2=(1/sqrt2)^2#

This locus represents the circle with center at #(1/2, -3/2)# and

radius #1/sqrt2#.