How do you find the maclaurin series expansion of #cos (x)^2#?
1 Answer
# cos^2x = 1 -x^2+1/3x^4-2/45x^6 + ...#
Explanation:
We seek a Maclaurin series expansion of
Using the known series:
# cosx = 1 - (x^2)/(2!) + (x^4)/(4!) - (x^6)/(6!) + ... #
We can write the product as:
# cos^2x = {1 - (x^2)/(2!) + (x^4)/(4!) - ...}{1 - (x^2)/(2!) + (x^4)/(4!) - ...} #
# \ \ \ \ \ \ \ \ \ = {1 - (x^2)/(2) + (x^4)/(24) - (x^6)/(720) +...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ - (x^2)/(2){1 - (x^2)/(2) + (x^4)/(24) - (x^6)/(720) +...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ + (x^4)/(24){1 - (x^2)/(2) + (x^4)/(24) - (x^6)/(720) +...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ - (x^6)/(720){1 - (x^2)/(2) + (x^4)/(24) - (x^6)/(720) +...} - ... #
# \ \ \ \ \ \ \ \ \ = {1 - (x^2)/(2) + (x^4)/(24) - (x^6)/(720) +...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ - {(x^2)/(2) - (x^4)/(4) + (x^6)/(48) - ...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ + {(x^4)/(24) - (x^6)/(48) + ...} #
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ - {(x^6)/(720) - ...} - ... #
# \ \ \ \ \ \ \ \ \ = (1) + (-1/2-1/12)x^2+(1/24+1/4+1/24)x^4#
# \ \ \ \ \ \ \ \ \ \ \ \ \ \ + (-1/720-1/48-1/48-1/720)x^6 + ...#
# \ \ \ \ \ \ \ \ \ = 1 -x^2+1/3x^4-2/45x^6 + ...#