How do you find the maclaurin series expansion of #f(x) = (1 + x^2)^(1/3)#?
1 Answer
Nov 14, 2015
Find series for
#f(x) = sum_(n=0)^oo (prod_(k=0)^(n-1) (1-3k))/(3^n n!)x^(2n)#
Explanation:
Let
Then:
#g^((1))(t) = 1/3(1+t)^(-2/3)#
#g^((2))(t) = -2/9(1+t)^(-5/3)#
#g^((3))(t) = 10/27(1+t)^(-8/3)#
...
#g^((n))(t) = (prod_(k=0)^(n-1) (1-3k))/3^n (1+t)^((1-3n)/3)#
and
#g^((n))(0) = (prod_(k=0)^(n-1) (1-3k))/3^n#
So:
Then substitute
#f(x) = sum_(n=0)^oo (prod_(k=0)^(n-1) (1-3k))/(3^n n!)x^(2n)#