How do you find the maclaurin series expansion of #(x/(1+x^3))#?

1 Answer
Oct 24, 2015

Use the Maclaurin series for #1/(1-t)# and substitution to find:

#x/(1+x^3) = sum_(n=0)^oo (-1)^n x^(3n+1)#

Explanation:

The Maclaurin series for #1/(1-t)# is #sum_(n=0)^oo t^n#

since #(1-t) sum_(n=0)^oo t^n = sum_(n=0)^oo t^n - t sum_(n=0)^oo t^n = sum_(n=0)^oo t^n - sum_(n=1)^oo t^n = t^0 = 1#

Substitute #t = -x^3# to find:

#1/(1+x^3) = sum_(n=0)^oo (-x^3)^n = sum_(n=0)^oo (-1)^n x^(3n)#

Multiply by #x# to find:

#x/(1+x^3) = sum_(n=0)^oo (-1)^n x^(3n+1)#

This is a geometric series with common ratio #-x^3# so it converges if #abs(x) < 1# and has radius of convergence #1#.