How do you find the Maclaurin Series for #f(x)=cos(5x^2)#?
1 Answer
Mar 25, 2017
The Maclaurin series for
#cos(x)=sum_(n=0)^oo(-1)^n/((2n)!)x^(2n)=1-x^2/(2!)+x^4/(4!)-x^6/(6!)+...#
So:
#cos(5x^2)=sum_(n=0)^oo(-1)^n/((2n)!)(5x^2)^(2n)=1-(5x^2)^2/(2!)+(5x^2)^4/(4!)-(5x^2)^6/(6!)+...#
#color(white)(cos(5x^2))=sum_(n=0)^oo((-1)^n5^(2n))/((2n)!)x^(4n)#