How do you find the Maclaurin Series for #sin^3 (x)#?

1 Answer
Oct 14, 2016

#sin^3 x = sum_(n=0)^oo (((-1)^n3(1-3^(2n)) )/(4(2n+1)!)x^(2n+1))#

#= x^3-x^5/2+(13x^7)/120-(41x^9)/3024+...#

Explanation:

It is probably easiest to derive it from the Maclaurin series for #sin x# and the triple angle formula for #sin#:

#sin x = sum_(n=0)^oo ((-1)^n )/((2n+1)!)x^(2n+1) = x - x^3/(3!) + x^5/(5!) - x^7/(7!) +...#

#sin 3 x = 3 sin x - 4 sin^3 x#

So:

#sin^3 x = 1/4 (3 sin x - sin 3 x)#

#color(white)(sin^3 x) = 1/4 (3 (sum_(n=0)^oo ((-1)^n x^(2n+1))/((2n+1)!)) - (sum_(n=0)^oo ((-1)^n (3x)^(2n+1))/((2n+1)!)))#

#color(white)(sin^3 x) = 1/4 sum_(n=0)^oo (3((-1)^n x^(2n+1))/((2n+1)!)- ((-1)^n (3x)^(2n+1))/((2n+1)!))#

#color(white)(sin^3 x) = 1/4 sum_(n=0)^oo (((-1)^n(3-3^(2n+1)) x^(2n+1))/((2n+1)!))#

#color(white)(sin^3 x) = sum_(n=0)^oo (((-1)^n3(1-3^(2n)) )/(4(2n+1)!)x^(2n+1))#