How do you find the maximum or minimum of #f(x)=x^2+6x-2#?
1 Answer
Mar 4, 2017
Explanation:
differentiate f(x) and equate to zero.
#rArrf'(x)=2x+6#
#2x+6=0rArrx=-3#
#rArrf(-3)=9-18-2=-11#
#rArr" stationary point at " (-3,-11)# Using the
#color(blue)"second derivative test"# • If f'' (a) > 0 then minimum
• If f'' (a) > 0 then maximum
#rArrf''(x)=2>0tocolor(red)"minimum"#
graph{x^2+6x-2 [-40, 40, -20, 20]}