# How do you find the midpoint of H(-5,5) and I(7,3)?

Mar 7, 2018

See a solution process below:

#### Explanation:

The formula to find the mid-point of a line segment give the two end points is:

$M = \left(\frac{\textcolor{red}{{x}_{1}} + \textcolor{b l u e}{{x}_{2}}}{2} , \frac{\textcolor{red}{{y}_{1}} + \textcolor{b l u e}{{y}_{2}}}{2}\right)$

Where $M$ is the midpoint and the given points are:

$\left(\textcolor{red}{{x}_{1}} , \textcolor{red}{{y}_{1}}\right)$ and $\left(\textcolor{b l u e}{{x}_{2}} , \textcolor{b l u e}{{y}_{2}}\right)$

Substituting the values from the points in the problem gives:

${M}_{H - I} = \left(\frac{\textcolor{red}{- 5} + \textcolor{b l u e}{7}}{2} , \frac{\textcolor{red}{5} + \textcolor{b l u e}{3}}{2}\right)$

${M}_{H - I} = \left(\frac{2}{2} , \frac{8}{2}\right)$

${M}_{H - I} = \left(1 , 4\right)$

Mar 7, 2018

$\left(1 , 4\right)$

#### Explanation:

$\text{the midpoint is the average of the coordinates of the}$
$\text{endpoints}$

$\text{midpoint of HI } = \left[\frac{1}{2} \left(- 5 + 7\right) , \frac{1}{2} \left(5 + 3\right)\right] = \left(1 , 4\right)$