How do you find the number of complex zeros for the function #f(x)=27x^6+208x^3-64#?
1 Answer
Explanation:
#f(x) = 27x^6+208x^3-64#
By the Fundamental Theorem of Algebra,
Descartes' Rule of Signs
The signs of the coefficients of
With one change of sign, that means that
The signs of the coefficients of
With one change of sign, that means that
The other
Bonus - Direct solution
#27f(x) = 27(27x^6+208x^3-64)#
#color(white)(27f(x)) = 729x^6+5616x^3-1728#
#color(white)(27f(x)) = (27x^3)^2+2(104)(27x^3)+(104)^2-112^2#
#color(white)(27f(x)) = (27x^3+104)^2-112^2#
#color(white)(27f(x)) = ((27x^3+104)-112)((27x^3+104)+112)#
#color(white)(27f(x)) = (27x^3-8)(27x^3+216)#
#color(white)(27f(x)) = 27((3x)^3-2^3)(x^3+2^3)#
#color(white)(27f(x)) = 27(3x-2)(9x^2+6x+4)(x+2)(x^2-2x+4)#
#color(white)(27f(x)) = 27(3x-2)(3x-2omega)(3x-2omega^2)(x+2)(x+2omega)(2+2omega^2)#
where
So the Real zeros are:
#x = 2/3#
#x = -2#
and the non-Real Complex zeros are:
#x = 2/3omega#
#x = 2/3omega^2#
#x = -2omega#
#x = -2omega^2#