How do you find the points of intersection of #r=3(1+sintheta), r=3(1-sintheta)#?
1 Answer
Sep 3, 2017
Hence the points of interaction are:
# (3, sin npi) #
If we consider the interval
# (3, 0) # and# (3, pi) #
Explanation:
We have:
# r = 3(1+sintheta) #
# r = 3(1-sintheta) #
At any point of intersection both equations are simultaneously satisfied, so we have:
# 3(1+sintheta) = 3(1-sintheta) #
# :. 1+sintheta = 1-sintheta #
# :. 2sintheta = 0 #
# :. sintheta = 0 #
# :. theta = npi #
And with
# r = 3(1+0) #
# :. r =3 #