How do you find the points where the graph of the function #y=x^4 - 8x^2 +2# has horizontal tangents and what is the equation?

1 Answer
Jun 17, 2016

Horizontal tangents are at points #(0,2)#,
#(4/sqrt3,-110/9)# and #(-4/sqrt3,-110/9)#.

Explanation:

For #y=f(x)#, horizontal tangents will appear where #f'(x)=0#.

As #y=x^4-8x^2+2#, #f'(x)=3x^3-16x=x(3x^2-16)=x(xsqrt3-4)(xsqrt3+4)#

Hence #f'(x)=0# is at #x=0# and #x=4/sqrt3# and #x=-4/sqrt3#

Equation of a horizontal line parallel to #x#-axis is of type #y=a#,

hence let us find value of #y# at these values of #x#.

At #x=0#, #y=0^4-8*0^2+2=2#

at #x=4/sqrt3#, #y=(4/sqrt3)^4-8*(4/sqrt3)^2+2=256/9-128/3+2=-110/9#

and at #x=-4/sqrt3#, #y=(-4/sqrt3)^4-8*(-4/sqrt3)^2+2=256/9-128/3+2=-110/9#

Hence horizontal tangents are #y=2# and #y=-110/9# i.e. #9y+110=0# at points #(0,2)#, #(4/sqrt3,-110/9)# and #(-4/sqrt3,-110/9)#.

graph{x^4-8x^2+2 [-5, 5, -20, 20]}