How do you find the product #-9g(-2g+g^2)+3(g^2+4)#?

1 Answer
Jul 9, 2017

See a solution process below:

Explanation:

First, expand the terms in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

#color(red)(-9g)(-2g + g^2) + color(blue)(3)(g^2 + 4) =>#

#(color(red)(-9g) xx -2g) + (color(red)(-9g) xx -g^2) + (color(blue)(3) xx g^2) + (color(blue)(3) xx 4) =>#

#18g^2+ (-9g^3) + 3g^2 + 12 =>#

#18g^2 - 9g^3 + 3g^2 + 12#

Next, group like terms:

#-9g^3 + 18g^2 + 3g^2 + 12#

Now, combine like terms:

#-9g^3 + (18 + 3)g^2 + 12#

#-9g^3 + 21g^2 + 12#